
Interactive Image-space Point Cloud Rendering with

Transparency and Shadows

Petar Dobrev Paul Rosenthal Lars Linsen

Jacobs University, Bremen, Germany

{p.dobrev, p.rosenthal, l.linsen}@jacobs-university.de

ABSTRACT

Point-based rendering methods have proven to be effective for the display of large point cloud surface models. For a realistic

visualization of the models, transparency and shadows are essential features. We propose a method for point cloud rendering

with transparency and shadows at interactive rates. Our approach does not require any global or local surface reconstruction

method, but operates directly on the point cloud. All passes are executed in image space and no pre-computation steps are

required. The underlying technique for our approach is a depth peeling method for point cloud surface representations. Having

detected a sorted sequence of surface layers, they can be blended front to back with given opacity values to obtain renderings

with transparency. These computation steps achieve interactive frame rates. For renderings with shadows, we determine a point

cloud shadow texture that stores for each point of a point cloud whether it is lit by a given light source. The extraction of the

layer of lit points is obtained using the depth peeling technique, again. For the shadow texture computation, we also apply a

Monte-Carlo integration method to approximate light from an area light source, leading to soft shadows. Shadow computations

for point light sources are executed at interactive frame rates. Shadow computations for area light sources are performed at

interactive or near-interactive frame rates depending on the approximation quality.

Keywords: point-based rendering, shadows, transparency

1 INTRODUCTION

Ever since the emergence of 3D scanning devices, sur-

face representation and rendering of the scanned ob-

jects has been an active area of research. Acquiring

consistent renderings of the surfaces is not trivial as

the output of the scanning processes are point clouds

with no information about the connectivity between

the points. Several techniques have been developed

to remedy this problem, ranging from global and lo-

cal surface reconstruction to methods entirely operat-

ing in image space. Traditional approaches involve the

generation of a triangular mesh from the point cloud,

e.g. [3],which represents a (typically closed) manifold,

and the subsequent application of standard mesh ren-

dering techniques for display. Such global surface re-

construction approaches, however, scale superlinearly

in the number of points and are slow when applied to

the large datasets that can be obtained by modern scan-

ning devices.

This observation led to the idea of using local sur-

face reconstruction methods instead. Local surface re-

construction methods compute for each point a subset

of neighboring points and extend the point to a local

surface representation based on plane or surface fitting

to its neighborhood [1]. The point cloud rendering is,

then, obtained by displaying the (blended) extensions.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

The local surface reconstruction itself is linear in the

number of points, but it relies on a fast and appropri-

ate computation of a neighborhood for each point in

a pre-computation step. The speed and quality of the

approach depends heavily on the choice of the neigh-

borhood.

As the number of points increases, the surface el-

ements tend to shrink and when projected to the im-

age plane have nearly pixel size. This observation

was already made by Grossman and Dally [6], who

presented an approach just using points as rendering

primitives and some image-space considerations to ob-

tain surface renderings without holes. Recently, this

image-space technique has been re-considered and im-

proved [8, 11, 13]. This method has the advantage

that no surface reconstruction is required and that all

image-space operations can efficiently be implemented

on the GPU, utilizing its speed and parallelism. It only

assumes points (and a surface normal for appropriate

illumination). Our approach builds upon the ideas of

Rosenthal and Linsen [11]. The image-space opera-

tions for transforming a projected point cloud to a sur-

face rendering include image filters to fill holes in the

projected surface, which originate from pixels that ex-

hibit background information or occluded/hidden sur-

face parts, and smoothing filters. The contribution of

this paper is to provide transparency and shadow capa-

bilities for such point cloud renderings at high frame

rates using a depth peeling technique.

Depth peeling is a multi-pass technique used to ex-

tract (or “peel”) layers of surfaces with respect to a

given viewpoint from a scene with multiple surface

layers. While standard depth testing in image space

provides the nearest fragments of the scene (i.e., the

closest layer), depth peeling with n passes extracts n

such layers. We describe our depth peeling approach

for point cloud surface representations in Section 3.

The information extracted by the depth peeling ap-

proach can be put to different applications. We exploit

this information for enhancing the capabilities of in-

teractive point cloud renderings with transparency and

(soft) shadows. To achieve the first goal, we developed

a method for order-independent transparency compu-

tation described in Section 4. Once the depth peel-

ing approach has acquired the surface layers, they are

blended with object-specific opacity values in the order

of their acquisition. This approach allows for render-

ing of multiple surfaces in one scene using different

opacity values for each.

Our second goal was the shadow computation in

scenes with point cloud surface representations and the

interactive rendering of such scenes. To determine

lit and unlit regions of the scene, one has to deter-

mine, which points are visible from the light source

and which are not. This can be done by rendering the

scene with the viewpoint being the position of the light

source. In this setting, all those points that are visi-

ble can be marked as lit. This approach assumes that

we apply the image-space rendering approach with the

filters that remove occluded surface parts. The result

can be stored in form of a point cloud shadow texture.

However, since the scene is typically composed of a

large number of points, it is more than likely that mul-

tiple visible points project to the same pixel such that

marking only one of those points as lit would result in

an inconsistent shadow texture. To extract and mark

multiple lit points that project to the same pixel, we

apply the depth peeling technique, again. Once all lit

points have been marked, the scene is rendered from

the viewpoint of the observer, where the unlit points

are rendered without diffuse or specular lighting, i.e.,

only using ambient light. To create soft shadows and

alleviate aliasing artifacts, we use a Monte-Carlo inte-

gration method to approximate light intensity from an

area light source. Details are given in Section 5.

The GPU implementation of the algorithms allows

us to achieve interactive rates for layer extraction,

transparent renderings, and renderings of scenes with

(soft) shadows. Results of all steps are presented in

Section 6.

2 RELATED WORK

An effective way to incorporate transparency and/or

shadows to point-based rendering is the use of ray

tracing methods as introduced by Schaufler and

Jensen [12]. However, such approaches are typically

far from achieving interactive frame rates. The only

interactive ray tracing algorithm of point-based models

was introduced by Wald and Seidel [14], but they

restricted themselves to scenes with shadows, i.e.,

transparency is not supported. The original EWA

splatting paper [16] presents a method for trans-

parency utilizing a software multi-layered framebuffer

with fixed number of layers per pixel. Zhang and

Pajarola [15] introduced the deferred blending ap-

proach, which requires only one geometry pass for

both visibility culling and blending. They also propose

an extension how to use this approach to achieve

order-independent transparency with one geometry

pass.

An approach to incorporate shadows into inter-

active point-based rendering can be obtained in a

straight-forward manner when first reconstructing

the surface from the point cloud (globally or locally)

and subsequently apply standard shadow mapping

techniques [4]. Botsch et al. [2] applied shadow

maps to EWA splatting using GPU implementation to

achieve interactive rates. Guennebaud and Gross [7]

presented another local surface reconstruction tech-

nique, employing moving least squares fitting of

algebraic spheres, and also applied shadow mapping

to it.

The shadow computation in our approach is simi-

lar to irradiance textures (also known as “pre-baked”

lighting) in mesh-based rendering [10, 9]. Lit surfaces

are determined and stored in a texture by rendering the

scene with the viewpoint being the position of the light

source. In the rendering pass this information is used to

determine which surfaces should be drawn in shadow,

and which not.

3 DEPTH PEELING

Depth peeling was introduced by Everitt [5] and is a

technique to partition a static 3D scene into sorted lay-

ers of geometry. As the name suggests, the layers are

extracted in an iterative fashion by “peeling” off one

layer after another. The sorting is induced by the given

viewpoint. Hence, in each iteration the fragments of

the projected visible scene are determined, stored as

a representation of the current layer, and removed to

compute the subsequent layers. Figure 1 illustrates the

depth peeling idea. The depth peeling technique is im-

screen

1 2 3 4

Figure 1: 2D illustration of depth peeling: visible lay-

ers of geometry are extracted from front to back. First

layer is shown in blue, second in red, third in green,

and fourth in yellow.

plemented in a multi-pass algorithm, i.e., to extract n

layers the whole scene has to be rendered n times. Each

rendering pass is performed with enabled depth test-

ing such that the points closest to the viewpoint and

their distances to the viewer are recorded. For the sec-

ond up to the nth pass, only those points are rendered,

whose distance to the viewer is greater than the dis-

tance recorded in the preceding pass.

As we want to avoid any (global or local) object-

space surface reconstruction, we apply the depth peel-

ing technique to scenes consisting of points only. Con-

sequently, each layer is represented as a set of projected

points. Depending on the sampling rate that has been

used to acquire the surface, the screen resolution, and

the distance to the viewer, it may happen that the points

projected to the image plane do not cover all the screen

pixels that a reconstructed surface would. Hence, the

surface layer may exhibit holes where the background

or points of hidden surface layers become visible. Fig-

ure 2 illustrates this effect for a 2D scene that is pro-

jected to a 1D screen consisting of five pixels. The

projection of the first surface layer (blue points) should

cover the entire screen. However, there are pixels to

which no blue point is mapped. Instead, the second

surface layer (red color) or even the background of the

scene (grey color) is visible. These gaps in the surface

representation of the first layer need to be filled appro-

priately. Of course, the same issue may arise for all

other extracted layers. Hence, in each rendering pass,

we apply image-space operations to the extracted layer

to fill the gaps in the surface. The image-space opera-

screen first layer hidden layers

Figure 2: When projecting first layer (blue) in point

cloud representation to the screen, the layer exhibits

holes such that hidden layers (red) or the background

(grey) become visible.

tions are executed on the rendering texture using depth

information stored in the depth buffer. The operations

are executed in four steps: filling surface gaps in form

of background pixels (grey pixel in Figure 2), filling

surface gaps in form of occluded pixels (red pixel in

Figure 2), smoothing the image for an improved ren-

dering quality of the extracted layer, and anti-aliasing

applied to the silhouettes and feature lines in the result-

ing image.

To fill holes caused by pixels exposing background

information, one has to identify which background pix-

els represent holes in the surface layer and which do

not. To determine reliably which pixels are to be filled

and which not, we apply a filter that checks the 3× 3

neighborhood of each background pixel against the set

of masks shown in Figure 3. In Figure 3, the framed

pixel is the candidate to be filled and the bright ones

are neighboring background pixels. The dark pixels

may be background or non-background pixels. If the

neighborhood matches any of the configurations, the

pixel is not filled. Otherwise, its color and depth infor-

mation is replaced by the color and depth information

of the pixel with smallest depth within the stencil of the

mask, i.e., within the 3×3 neighborhood. The filters in

Figure 3 have been proposed by Rosenthal and Linsen

for image-space point cloud rendering. For a detailed

discussion of the filters and their application, we refer

to the literature [11]. The application of the gap fill-

ing step may have to be iterated to fill larger gaps. The

operations are always executed on both the rendering

texture and the depth texture simultaneously.

Figure 3: Masks of size 3× 3 for detecting pixels ex-

hibiting holes in the projected point cloud surface rep-

resentation.

To fill pixels that exhibit occluded surface layers, we

need to be able to distinguish between pixels from dif-

ferent surface layers. In order to decide whether two

pixels belong to the same surface layer, we introduce

a parameter dmin denoting the minimum distance be-

tween two consecutive layers. The parameter depends

on the dataset and is typically determined empirically.

The occluded pixel filling operation is analogous to the

background pixel filling operation. The neighborhood

of the candidate pixel is also checked against the masks

in Figure 3, only that the bright and the dark pixels in

the masks have a different meaning. If the candidate

pixel’s depth is d, bright pixels correspond to points

that have depth values greater than d +dmin. Dark pix-

els may have any depth. If the neighborhood satisfies

any of the masks, the pixel is not changed. Otherwise,

its color and depth information is replaced by the color

and depth information of the pixel with smallest depth

within the stencil of the mask. Also this second gap

filling step may have to be iterated.

To improve the quality of the surface rendering, two

additional steps may be applied. The two gap filling

steps always replace the gap with the information from

the pixel closest to the viewer. A weighted average of

the information of those neighboring pixels that belong

to the same surface layer would have been preferable.

As it would have been too cumbersome to detect all

those neighbors, a more efficient way to obtain a simi-

lar result is to apply a subsequent smoothing filter. We

apply a Gaussian filter of size 3× 3. This smoothing

step may be iterated.

However, the smoothing step does not smooth across

the silhouette of the projected surface. The silhouettes

and feature lines are treated in a separate step that has

explicitly been introduced for anti-aliasing purposes.

From the depth image, we can easily detect silhouettes

and feature lines by checking the depth difference of

neighboring pixels against parameter dmin (edge de-

tection filtering). All those pixels whose neighbor-

hood exhibit a significant jump in the depth values

are marked as contributing to a feature line. To all

these pixels, we apply a smoothing that reduces alias-

ing along the feature lines.

A result of the described pipeline may be seen in Fig-

ure 4. We used the Turbine Blade dataset (Data cour-

tesy of Visualization Toolkit) and extracted the first

three surface layers. The results have been obtained

by applying in each depth peeling pass one iteration

of the background pixel filling, occluded pixel filling,

Gaussian smoothing, and anti-aliasing.

(a) (b)

(c) (d)

Figure 4: Depth peeling applied to the Blade dataset

to extract the (a) first, (b) second, and (c) third layer.

The layers are represented as point clouds.The gaps

between projected points have been filled using only

image-space operations. Blending the layers allows for

transparent surface renderings (d).

4 TRANSPARENT SURFACES

Rendering of transparent surfaces is a direct applica-

tion of depth peeling. It only requires to blend the ac-

quired layers in the order of extraction. However, since

point clouds are typically dense, it frequently happens

that two or more adjacent points of one surface layer

project to the same fragment. Without taking special

care of this case, they would be recorded in separate

layers by the depth peeling technique such that con-

secutive layers contain points that should belong to the

same surface layer. Figure 5(a) illustrates this problem

in the 2D case. Points of the first surface layer are de-

picted in blue and of the second surface layer in red.

Multiple blue points are mapped to one pixel of the

screen.

(a) screen first layer second layer

(b) screen second layerdmin

Figure 5: Depth peeling for transparent rendering: (a)

first rendering pass records closest points and their

depths; b) second rendering pass again records the

closest points and their depths, but ignores points less

than dmin away from the reference depths obtained in

the preceding run.

We tackle this problem by using, again, parameter

dmin, i.e., the minimum distance between two surface

layers, to perform ε-z culling: in each rendering pass,

depth peeling records the color of the closest point p

for each pixel along with its depth d that serves as a

reference for the next run. All points that project to

the same pixel as point p and have a depth less than

d + dmin must belong to the same surface layer as p.

Figure 5(b) illustrates this idea for the example from

Figure 5(a). The green boxes of width dmin indicate

the area that is considered as one surface layer. Hence,

the second depth peeling pass discards all points with

depth less than d + dmin and correctly detects only

points belonging to the second (red) surface layer, see

Figure 5(b).

This procedure of skipping points within depth range

[d,d+dmin] has already been used to generate the three

layers of the Blade dataset shown in Figure 4. All that

is left to do for point cloud rendering with transparency

is to blend the layers front to back with an application-

specific opacity value α . The result can be seen in Fig-

ure 4(d). The opacity value used for all layers was

α = 0.5.

5 SHADOW TEXTURES

Point cloud shadow textures are basically Boolean ar-

rays that store which points are lit and which not. Once

the shadow texture is determined, lit points are drawn

properly illuminated with ambient, diffuse, and spec-

ular reflection components using Phong’s illumination

model, while unlit points are only drawn using the am-

bient reflection component. This illumination creates

the effect of shadows, as only those points are marked

unlit where the light source is occluded by other sur-

face parts.

To determine which points are visible from the light

source, we render the scene with the light source’s po-

sition being the viewpoint with depth testing enabled.

All visible points are marked in an array. However,

as in Section 4 we observe that, due to the high point

density, it is not unusual that several adjacent points of

one surface layer project to the same fragment position.

The suggested procedure would only mark the closest

point for each fragment as lit, which would lead to an

inconsistent shadow textures. Figure 6 illustrates the

problem for a scene with only one surface layer and

no occlusion. The points of the entire surface should

be marked as lit. However, due to the described issue,

only the closest points (red) are marked as lit, while the

others (blue) remain unlit. When observing the scene

from a position different from the position of the light

source, the unlit points become visible and the render-

ing exhibits strange shadow patterns.

 light
source

observer

Figure 6: Inconsistent shadow texture in case of high

point density: marking only the closest points to the

light source as lit, leaves unlit points on the same sur-

face part. The unlit points become visible when posi-

tions of observer and light source do not coincide.

Again, depth peeling is the key to solve this problem,

but we apply it differently. While for transparent sur-

face rendering our goal was to extract different surface

layers, now we want to find all the points that belong

to a single surface layer, namely the closest one.

To decide, which points belong to one layer, we con-

sider again parameter dmin, i.e., the minimum distance

between two surface layers. We render the point cloud

from the position of the light source. Let d be the depth

of the closest point p for a given pixel. Then, we con-

sider all points that project to that pixel and have depth

values less than d +dmin as belonging to the same sur-

face layer as p. Therefore, we mark them as lit.

However, since depth is measured as the distance to

the viewing plane, applying the same offset dmin for all

points would result in an inconsistent shadow texture.

The reason is that the depth of the lit layer should al-

ways be taken perpendicularly to the surface, and not

along the viewing direction. In order to account for

the change in the offset, we scale dmin by a factor that

depends on the surface normal. Let v be the viewing di-

rection and n be the surface normal in the light source

domain. Then, the offset is given by ∆d = dmin
<v,n>

.

Given that the viewing direction in the light source do-

main is (0,0,−1), we obtain that < v,n >= −nz. To

avoid division by zero, this factor is truncated at some

maximum value.

As a first step of the algorithm, we obtain the shadow

map for the light source, i.e., we record the depth of the

closest points as viewed from the light source. As some

of the recorded depths might correspond to occluded

surface parts, we apply the occluded pixel hole-filling

filter on the shadow map. This way pixels, which be-

long to an occluded surface, will be overwritten in the

shadow map and, hence, remain in shadow.

Then, we project all points from the dataset to the

light domain and compare their depth values to the

ones stored in the shadow map. The points, whose

depth is less than the reference depth plus threshold

∆d, are recorded as lit in the shadow texture. The rest

are left unlit. This operation can very efficiently be im-

plemented on the GPU by using a shader, which takes

an array (a texture) of all point positions as input and

outputs a boolean array of the same size. The values

in the boolean array determine whether the respective

point from the input array is lit or not. The shader reads

the position of each point from the input texture and

projects it in the light domain. Then it compares its

depth with the one stored in the shadow map and out-

puts the result of the comparison to the same texture

position as in the input texture.

Figure 7(a) shows a point cloud rendering with shad-

ows applied to the Blade surface shown in Figure 4.

It can be observed that the binary marking whether a

point is lit or not results in hard shadows with crisp,

sharp edges. To create more appealing renderings with

softer shadows, we approximate the complex compu-

tation of illumination by an area light source using

Monte-Carlo integration methods. A number of ran-

domly chosen sample points, lying in the plane perpen-

dicular to the light direction and within the area of the

light source, are used as point light sources. A sepa-

rate shadow texture is computed for each of them. The

resulting binary decision values are averaged. The re-

sulting shadow texture is the average of all the shadow

textures for the different sample points. It contains no

longer just zeros or ones, but floating-point numbers

out of the interval [0,1]. These numbers determine to

what extent the diffuse and specular components are

taken into account.

Let ka, kd , and ks denote the ambient, diffuse, and

specular components of the illuminated surface at a

specific point. Moreover, let m ∈ [0,1] be the value

in the shadow texture stored for that particular point.

Then, the surface color at that point is computed as:

c = ka + m · (kd + ks). Figure 7(b) shows the result

of point cloud rendering with soft shadows using

Monte-Carlo integration methods for the scene that

has been shown in Figure 7(a). We have used 30

samples to compute the shadow texture. In the lower

left of both figures, we provide a zoomed view into

a shadow/no-shadow transition region. The shadows

appear much softer in Figure 7(b) and their edges are

much smoother.

(a) (b)

Figure 7: Point cloud rendering with shadows for the

Blade dataset: (a) hard shadows using one point light

source; (b) soft shadows using Monte-Carlo integration

methods with 30 samples to compute the point cloud

shadow texture.

6 RESULTS & DISCUSSION

We applied our approach to three types of point cloud

data: The model of the Turbine Blade (883k points),

given as an example throughout the paper, is from the

category of scanned 3D objects. Other datasets from

the same category that we have tested our approach on

are the Dragon (437k points) and Happy Buddha (543k

points) models1. Although polygonal representations

of these objects exist, any information beside the point

cloud was not considered. A synthetical dataset we

applied our algorithm to is a set of three nested tori

(each 2M points). Finally, we tested our method on two

point clouds obtained from isosurface extraction: one

from an electron spatial probability distribution field

referred to as “Neghip”2 (128k points) and the other

from a hydrogen molecule field3 (535k points for 3

nested isosurfaces).

All results have been generated on an Intel XEON

3.20GHz processor with an NVIDIA GeForce

GTX260 graphics card. The algorithms were imple-

mented in C++ with OpenGL and OpenGL Shading

Language for shader programming. All images

provided as examples or results in the paper have been

captured from a 1024× 1024 viewport. One iteration

of each of the image-space operations described in

Section 3, i.e., background pixels filling, occluded

pixels filling, smoothing, and anti-aliasing, was used

1 Data courtesy of Stanford University Computer Graphics Lab
2 Data courtesy of VolVis distribution of SUNY Stony Brook
3 Data courtesy of SFB 382 of the German Research Council

when producing each rendering. A detailed list of

computation times for different datasets, number of

layers, number of samples, and resolutions is given in

Table 1.

The frame rates for point cloud rendering with local

Phong illumination are between 102 fps and 7.8 fps for

datasets of sizes between 128k and 6M points and a

1024×1024 viewport. The computation times exhibit

a linear behavior in the number of points and a sub-

linear behavior in the number of pixels. There is no

pre-computation such as local surface reconstruction

necessary. All methods directly operate on the point

cloud. All operations are done in image space.

For rendering with transparency, the computation

times depend linearly on the number of transparent lay-

ers. For three transparent surface layers, we obtained

frame rates ranging from 28 fps to 2.7 fps. No pre-

computations are required. Zhang and Pajarola [15]

report better performance for their deferred blending

approach than depth peeling, but it is only applicable to

locally reconstructed surfaces using splats and requires

pre-computations. Moreover, it relies on an approx-

imate solution to compute transparency. The frame

rates they achieve on an NVidia GeForce 7800GTX

GPU are around 37fps for a 303k points dataset and

23 fps for a 1.1M points dataset. As a comparison, our

approach renders a 437k points model with 3 layers of

transparency at 35fps and a 883k points one at 17.6.

Unfortunately, no information about the resolution of

the view port used to capture their results is stated to

be able to perform a fully adequate comparison.

Figure 8(a) shows a transparent rendering of three

nested tori, each drawn with a different color and hav-

ing a different opacity value. The required number of

layers to achieve this kind of rendering is six, such

that all surface parts of all three tori are captured and

blended. When rendering all six layers of this 6M point

dataset, the frame rate drops to 1.3 fps. During naviga-

tion it may, therefore, be preferable to render just the

first layer.

Figures 8(b) and (c) show examples of how our ap-

proach can be applied in the context of scientific visu-

alization. When a scalar field is only known at unstruc-

tured points in space, an isosurface can be computed by

interpolating between neighboring points. The result is

given in form of an unstructured set of points on the

isosurface, i.e., a point cloud. The datasets we used

actually represent scalar fields defined over a struc-

tured grid, but for a proof of concept we re-sampled

the datasets at uniform randomly distributed points in

space. In Figure 8(b), we extracted an isosurface with

many components and 128k points, whereas in Fig-

ure 8(c) we used three isovalues to extract multiple

nested isosurfaces with a total of 535k points. Some

surface parts are completely occluded by others. A

transparent rendering helps the user to fully observe

Dataset Blade Happy Buddha Dragon 3 nested tori Neghip Hydrogen

points 883k 543k 437k 3 × 2M 128k 535k in total

Resolution 5122 10242 5122 10242 5122 10242 5122 10242 5122 10242 5122 10242

Local illumination 52 52 83 64 103 68 8 8 235 82 72 48

Transparency (3 layers) 17.6 17.5 28 22 35 23 2.7 2.7 83 27 24 15

Transparency (6 layers) 8.8 8.8 14 11 18 12 1.4 1.4 43 14 12 8

Shadows (1 sample) 26 25 40 39 50 49 4 3.7 145 64 40 31

Shadows (5 samples) 9 9 14 14 18 17 1.3 1.1 62 35 14 14

Shadows (10 samples) 5 5 7 7 9.6 9 0.6 0.6 35 22 8 7.5

Table 1: Frame rates in frames per second (fps) for rendering of point clouds with local illumination only, with

transparency (using 3 and 6 blending layers), and with shadows computed with 1, 5, and 10 samples used for

approximation of an area light source. One step for each hole filling filter was applied. No pre-computations are

necessary.

(a) (b) (c)

Figure 8: Image-space point cloud rendering with transparency: (a) Transparent rendering of three nested tori (2M

points each) with six blended layers. Each of the tori is drawn in a different color (blue, green, brown) and with

a different opacities (α = 0.3,0.5,1.0). (b) Point cloud with 128k points obtained by isosurface extraction of the

volumetric scalar field “Neghip” is rendered with transparency (α = 0.7) at 25 fps. (c) Three nested isosurfaces

are extracted from a hydrogen molecule scalar field in form of point clouds with a total of 535k points. The

visualization (at 9.8 fps) with semi-transparently rendered surfaces (α = 0.3,0.5,1.0) allows the user to observe

surfaces that are entirely occluded by others.

the isosurface extraction results. The transparent point

cloud renderings use four and six surface layers, re-

spectively, and run at frame rates of 25 fps and 9.8 fps.

The frame rates for generating renderings with shad-

ows by first computing a shadow texture are also pre-

sented in Table 1. For low number of samples for

Monte-Carlo integration, we achieve interactive rates

for most tested models. For comparable models, our

frame rates are higher than what has been reported for

interactive ray tracing on splats [14] and similar to the

ones reported for using shadow maps on splats [2].

These approaches, however, require a local surface re-

construction from the point cloud representation in a

pre-processing step. For large datasets such local sur-

face reconstructions can have a substantial computa-

tion time. Wald and Seidel [14] report performance

of about 5 frames per second for comparable models

with shadows and Phong shading, using a view port

of 512x512 on a 2.4GHz dual-Opteron PC. On mod-

ern day hardware their approach would still be slower

than what we have achieved (26 fps), since it utilizes

only the CPU. The GPU accelerated EWA splatting

approach of Botsch et al. [2] achieved a frame rate

of about 23 fps on a GeForce 6800 Ultra GPU for

rendering a model of 655k points with shadows. For

comparison, our approach renders a 543k points model

at 40 fps with one sample for shadows computation.

On today’s GPUs, their approach would achieve sim-

ilar performance, but it still requires a pre-processing

step to compute the splats. Moreover, for objects and

light sources that do not change their relative position

our approach also allows the shadow texture to be pre-

computed and loaded along the point cloud. This way

soft shadows, computed with lots of samples, can be

rendered at highly interactive rates, imposing almost

no load on the rendering pipeline.

A limitation of our approach comes from the reso-

lution of the shadow map used to generate the shadow

texture. If the resolution is chosen high, it is likely

that the shadow texture will contain more “holes” and

hence require more steps of the hole-filling filter to be

applied. If the resolution is chosen lower, such that

a couple of steps suffice, the edges of the shadow ap-

pear crisp and jaggy. This problem can be alleviated

by using more samples for the area light source inte-

gration, which will provide soft anti-aliased shadows.

If the scene cannot be rendered with multiple samples

at interactive rates, an interactive rendering mode can

be used: while navigating through the scene, i.e., rotat-

ing, translating or zooming, only one sample is used for

shadow computation to provide high responsiveness.

When not interacting, soft shadows are computed with

a given number of samples.

A rendering of the Dragon dataset with shadows is

shown in Figure 9. Ten samples were used for the

shadow texture computation. The frame rate for that

rendering is 9.6 fps, which allows for smooth interac-

tion.

Figure 9: Interactive rendering of the Dragon point

cloud model with soft shadows at 9.6 fps. 10 samples

are taken for the Monte-Carlo integration over the area

light source.

Although all operations were executed without any

computations in object space, we only introduced one

intuitive parameter, namely the minimum distance dmin

between two consecutive surface layers. This param-

eter was used at multiple points within our rendering

pipeline. An improper choice of this parameter can

produce severe rendering artifacts. For many datasets

there is a wide range of values from which a suitable

value for dmin can be chosen. Only when consecutive

layers happen to get close to each other as, for example,

for the Blade dataset, one has to choose dmin carefully.

However, as the impact of the choice becomes imme-

diately visible, an empirical choice was quickly made

for all our examples.

7 CONCLUSION

We presented an approach for interactive rendering

of surfaces in point cloud representation that supports

transparency and shadows. Our approach operates en-

tirely in image space. In particular, no object-space

surface reconstructions are required. Rendering with

transparency is achieved by blending surface layers

that have been computed by a depth peeling algorithm.

The depth peeling approach is also applied to compute

point cloud shadow textures. A Monte-Carlo integra-

tion step was applied to create soft shadows. We have

demonstrated the potential of our approach to achieve

high frame rates for large point clouds. To our knowl-

edge, this is the first approach that computes point

cloud rendering with transparency and shadows with-

out local surface reconstruction.

ACKNOWLEDGEMENTS

This work was supported by the Deutsche Forschungs-

gemeinschaft (DFG) under project grant LI-1530/6-1.

REFERENCES
[1] Marc Alexa, Markus Gross, Mark Pauly, Hanspeter Pfister,

Marc Stamminger, and Matthias Zwicker. Point-based com-

puter graphics. In SIGGRAPH 2004 Course Notes. ACM SIG-

GRAPH, 2004.

[2] Mario Botsch, Alexander Hornung, Matthias Zwicker, and Leif

Kobbelt. High-quality surface splatting on today’s gpus. In

Eurographics Symposium on Point-Based Graphics, pages 17–

24, 2005.

[3] Frédéric Cazals and Joachim Giesen. Delaunay triangulation

based surface reconstruction. In Jean-Daniel Boissonnat and

Monique Teillaud, editors, Effective Computational Geometry

for Curves and Surfaces. Springer-Verlag, Mathematics and

Visualization, 2006.

[4] Florent Duguet and George Drettakis. Flexible point-based

rendering on mobile devices. IEEE Comput. Graph. Appl.,

24(4):57–63, 2004.

[5] Cass Everitt. Introduction interactive order-independent trans-

parency. White Paper, NVIDIA, 2001.

[6] J. P. Grossman and William J. Dally. Point sample rendering.

In Rendering Techniques ’98, pages 181–192. Springer, 1998.

[7] Gaël Guennebaud and Markus Gross. Algebraic point set sur-

faces. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers,

page 23, New York, NY, USA, 2007. ACM.

[8] Ricardo Marroquim, Martin Kraus, and Paulo Roma Caval-

canti. Efficient point-based rendering using image reconstruc-

tion. In Proceedings Symposium on Point-Based Graphics,

pages 101–108, 2007.

[9] Tom Mertens, Jan Kautz, Philippe Bekaert, Frank Van Reeth,

and Hans-Peter Seidel. Efficient rendering of local subsurface

scattering. In PG ’03: Proceedings of the 11th Pacific Confer-

ence on Computer Graphics and Applications, page 51, Wash-

ington, DC, USA, 2003. IEEE Computer Society.

[10] Ravi Ramamoorthi and Pat Hanrahan. An efficient representa-

tion for irradiance environment maps. In SIGGRAPH ’01: Pro-

ceedings of the 28th annual conference on Computer graph-

ics and interactive techniques, pages 497–500, New York, NY,

USA, 2001. ACM.

[11] Paul Rosenthal and Lars Linsen. Image-space point cloud ren-

dering. In Proceedings of Computer Graphics International

(CGI) 2008, pages 136–143, 2008.

[12] Gernot Schaufler and Henrik Wann Jensen. Ray tracing point

sampled geometry. In Proceedings of the Eurographics Work-

shop on Rendering Techniques 2000, pages 319–328, London,

UK, 2000. Springer-Verlag.

[13] R. Schnabel, S. Moeser, and R. Klein. A parallelly decode-

able compression scheme for efficient point-cloud rendering.

In Symposium on Point-Based Graphics 2007, pages 214–226,

September 2007.

[14] Ingo Wald and Hans-Peter Seidel. Interactive ray tracing of

point based models. In Proceedings of 2005 Symposium on

Point Based Graphics, pages 9–16, 2005.

[15] Yanci Zhang and Renato Pajarola. Deferred blending: Image

composition for single-pass point rendering. Comput. Graph.,

31(2):175–189, 2007.

[16] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and

Markus Gross. Surface splatting. In SIGGRAPH ’01: Proceed-

ings of the 28th annual conference on Computer graphics and

interactive techniques, pages 371–378, New York, NY, USA,

2001. ACM.

