
Direct Surface Extraction from
Smoothed Particle Hydrodynamics

Simulation Data

Paul Rosenthal1 and Stephan Rosswog2 and
Lars Linsen1

1Computational Science and Computer Science,

School of Engineering and Science,

Jacobs University Bremen, Germany
2Astrophysics,

School of Engineering and Science,

Jacobs University Bremen, Germany

{p.rosenthal,s.rosswog,l.linsen}@iu-bremen.de

Abstract
Smoothed particle hydrodynamics is a completely mesh-free method

to simulate fluid flow. Rather than representing the physical variables
on a fixed grid, the fluid is represented by freely moving interpolation
centers (”particles”). Apart from their position and velocity these
particles carry information about the physical quantities of the con-
sidered fluid, such as temperature, composition, chemical potentials
etc. Being completely Lagrangian and following the motion of the
flow, these particles represent an unstructured data set at each point
in time, i.e. the particles do not exhibit a spatial arrangement nor a
fixed connectivity. To visualize the simulated particle data at a certain
point in time, we propose a method that extracts surfaces segmenting
the domain of the particles with respect to some scalar field.

For scalar volume data, isosurface extraction is a standard visu-
alization method and has been subject to research for decades. We
propose a method that directly extracts surfaces from smoothed par-
ticle hydrodynamics simulation data without 3D mesh generation or

1

reconstruction over a structured grid. It is based on spatial domain
partitioning using a kd-tree and an indexing scheme for efficient neigh-
bor search.

A geometry extraction step computes points on the surface by
linearly interpolating between neighbored pairs of sample points. Its
output is a point cloud representation of the surface. The final render-
ing step uses point-based rendering techniques to visualize the point
cloud. A level-set approach can be applied for smoother segmentation
results when extracting the geometry of the zero level set.

1 Introduction

Surface extraction is the most commonly used visualization technique for
scalar volume data beside direct volume rendering. Common ways to deal
with unstructured point-based volume data are to resample the data using
scattered data interpolation techniques [Franke & Nielson, 1991], or to com-
pute a grid that connects the unstructured data points [Co & Joy, 2005].
With a recently presented new approach [Rosenthal & Linsen, 2006], it is
now possible to extract surfaces directly from unstructured point-based vol-
ume data without any resampling or mesh generation.

In smoothed particle hydrodynamics each particle is moving according to
the flow equations. Therefore, at each point in time, the simulation data are
represented on an unstructured point-based data set. Standard visualization
techniques include rendering of the color-coded sample points, e.g. by the
commercial software AVS or IDL, extraction of the point set’s bounding
surface [Vesterlund, 2004], or direct volume rendering, e.g. by a free software
package developed by Daniel Price from the University of Exeter, UK. We
propose a method that directly extracts a surface that segments the domain
of the particles with respect to a given isovalue. For noisy and sparse sampled
data sets we introduce a level-set method smoothing the data set to get a
better segmentation result.

The isosurface-extraction pipeline is described in Section 3. In Section 4
an introduction to the used level-set method is given. Finally, Section 5
provides a case study applying our methods to smoothed particle hydrody-
namics.

2

2 Smoothed Particle Hydrodynamics

Invented in the astrophysical context [Lucy, 1977, Gingold & Monaghan, 1977],
smoothed particle hydrodynamics (SPH) has by now found its way in many
different modeling areas, see [Monaghan, 2005] for a recent comprehensive
review. SPH is a completely Lagrangian, mesh-free method to solve the
equations of fluid dynamics and therefore particularly well suited for simu-
lations in which large deformations occur.

The fluid continuum is represented by moving interpolation centers (”par-
ticles”), each of which possesses an interaction range, the so-called smooth-
ing length. The local density is calculated via a kernel weighted sum over
neighboring particles within its interaction range, the calculation of pressure
gradients involves sums over kernel gradients rather than finite differences.
To arrive at the discretized fluid equations nothing more than a Lagrangian,
a summation prescription for the density, and the first law of thermody-
namics are needed. Therefore, even in their discretized form the equations
conserve all physically conserved quantities by construction. The particles
are advanced in time according to the equation which expresses momentum
conservation.

3 Isosurface Extraction

In every point in time, the result of a smoothed particle hydrodynamics
simulation is an unstructured point-based volume data set. More precisely,
it is a set of trivariate scalar fields f : R3 → R, whose values are given for a
large, finite set of sample points (xi, f(xi)), whose positions are unstructured,
i.e. they are not arranged in a structured way, nor are any connectivity or
neighborhood informations known for the sample point locations.

To visualize such a scalar field, our intention is to extract an isosurface
Γiso = {x ∈ R3 : f(x) = viso} with respect to a real isovalue viso out of the
range of f . This isosurface extraction is performed in two main steps. First,
a set of isopoints pk ∈ R3 on the isosurface is computed, i.e. f(pk) = viso.
In a second step, some kind of neighborhood information for the isopoints is
generated. This is subsequently used for rendering the isosurface.

Our idea for the computation of isopoints from the smoothed particle
hydrodynamics simulation data is based on linear interpolation between
pairs of samples with close positions xi and xj. The inspiration for this

3

approach is given by isopoint computation using the marching tetrahedra
algorithm [Treece et al., 1999] after partitioning the domain via Delaunay
tetrahedrization. In this case, the Delaunay triangulation connects natural
neighbors defined by the Voronoi diagram.

We want to adopt this isopoint computation method for our purposes
while avoiding the expensive computation of the Delaunay tetrahedrization.
Thus, we need an approximation of the natural neighbors for each sample
position xi, which will be obtained by using a spatial space decomposition.
Simply replacing the natural neighbors by the nearest neighbors would fail in
our case of smoothed particle hydrodynamics simulation data due to varying
density distributions of the sample point locations.

The kd-tree data structure is known to be a data structure with well-
balanced trade-off between flexibility and efficiency [Bentley, 1975] and, what
is essentially in our application, with robustness against varying density dis-
tribution of sample point positions. To perform a fast exploration of the
kd-tree, we introduce an indexing scheme that, beside saving storage space,
allows us to determine neighbors using bitwise operations on the index. We
determine a small number of potential candidates for our neighbors and reject
some of them using an angle and maximum distance criterion.

We compute isopoints respectively by linearly interpolating between two
neighboring sample points on different sides of the isosurface. In a final step,
we use a recently presented point-based rendering technique [Linsen et al., 2007]
using splats to render the isosurface in point cloud representation.

3.1 Data Storage

The n SPH-simulation data points are stored in a three-dimensional kd-tree.
Besides the Cartesian coordinates of the points also the function values from
the SPH-simulation have to be stored. The tree is stored as a vector of
points. Thereon the kd-tree is build recursively splitting the sample point
sets of each cell at the median, while cycling through the coordinates. The
recursion stops if every cell contains exactly one sample point.

The height of the tree is dlog2(n + 1)e. In worst-case (n = 2j), j ∈ N+,
the number of nodes in the kd-tree is 2n − 1. The nodes of the kd-tree are
stored in the vector in breadth-first order, i.e. the root is in position 1 and
the children of the node in position j are in positions 2j and 2j + 1.

To have fast access to the nodes of the kd-tree a binary indexing scheme
is introduced. It allows fast navigation through the tree by using only binary

4

operations on the binary representation of the nodes positions. Moreover,
qualitative propositions about the locations of cells can be made. Thus many
informations are implicitly saved in the indexing scheme and will be used for
speeding up runtime.

3.2 Neighborhood Computation

The search for all neighbors will be done for all sample points that lie inside
a cell of the kd-tree. The neighborhood of a sample point x contains all cells
or splitting planes that have at least one point in common with the cell of x.
A two-dimensional illustration of the neighborhood is shown in Figure 1.

x

Figure 1: Neighborhood of the sample point x. The bright areas denote
the neighboring cells and the solid lines represent the neighboring splitting
planes.

As mentioned in Section 3.1 the way of storing the nodes of the kd-tree
in the vector constitutes that the position of every node and leaf in the tree
is clearly determined by the binary representation of its index. Thus, cells
and splitting planes can be identified with their index in the vector.

The computation of the neighborhood for a cell is divided in two main
steps. First we compute direct neighbors, i.e. cells and planes that resulted
from the last three steps of the tree building process. These neighbors can
be directly determined by the index of the observed sample point x.

In the second step we want to get neighbors for the three other faces of the
cell of x. The maximum number of these indirect neighbors is in contrast to
the direct neighbors not constant. More precisely it is O(

3
√

n2) in our case of
a three-dimensional kd-tree. But even in the worst case only a small number
of cells reach this number of indirect neighbors. Averaged, a cell has at most
nine indirect neighbors for each face.

5

To compute the indirect neighbors, the three splitting planes covering the
remaining faces of the cell of x are directly obtained from the cells index.
Subsequently for every found splitting plane a binary search on the opposite
side of x is done and delivers the remaining indirect neighbors.

All in all, the neighborhood computation uses with small exceptions only
informations provided by the indexing scheme. Thus, the search for all neigh-
bors uses mostly binary operations on the cells indices and has consequen-
tially a performance that is similar to nearest neighbor search in kd-trees.

3.3 Angle and Maximum Distance Criterion

For our intention, i.e. interpolating isopoints between neighboring sample
points, it is very important having neighbors not lying behind other neigh-
bors. One problem occurring in this case is shown in a two-dimensional
example in Figure 2.

Figure 2: Example of a bad isopoint interpolation caused by the small angle
between the two negative sample points and the positive sample point in the
lower right cell. The desired isocontour is drawn in light blue. Note that the
interpolated isopoint is farther away from the isoline than each sample point.

To avoid such situations we establish an angle criterion extending the an-
gle criterion method Linsen and Prautzsch [Linsen & Prautzsch, 2001] used
for point-based surface representations to volume data. It limits the maxi-
mum angle between neighbors to one sample point. If the criterion is violated
by a pair of neighbors, the farther neighbor is omitted from the neighborhood.

6

A second criterion limits the maximum distance between neighbors. This
criterion arises from the fact, that errors of linear interpolation can grow
enormously with increasing distance. If a neighbor’s distance to the ob-
served point exceeds the distance threshold it will also be omitted from the
neighborhood.

4 Level-Set Segmentation

Due to varying particle number densities of the SPH data the direct iso-
surface extraction step can produce rough isosurfaces in sparse areas. To
generate smoother segmentations, we propose the application of a level-set
segmentation method to the data prior to isosurface extraction.

The basic idea of level-set methods goes back to Osher and Sethian
[Osher & Sethian, 1988], who first described the evolution of a closed hy-
persurface. In general a so called level-set function ϕ is first initialized
on the sample points. Subsequently this level-set function is successively
adapted to the data set f . For this process a variety of approaches exist.
A detailed overview of this field of research is given by Osher and Fedkiw
[Osher & Fedkiw, 2003].

For our purposes, i.e. the smooth segmentation of SPH data, we used the
level-set process equation

dϕ

dt
= (a (f − fiso − ϕ) + bκϕ) |∇ϕ| ,

which models hyperbolic normal advection, weighted with factor a > 0, and
mean curvature flow, weighted with factor b > 0. This means that the level-
set function moves towards the data set with the factor a and the mean
curvature of the resulting isosurface is smoothed with the factor b.

This level-set process is done using a forward Euler time integration until
the level-set function does not move any more. The needed derivatives are
approximated using a least-squares approach. Subsequently the zero level
set is extracted using direct isosurface extraction, as described in Section 3.

7

5 Case Study: White Dwarf Black Hole En-

counters

Our Galaxy, the Milky Way, is surrounded by a halo of more than 150 glob-
ular clusters, spherical agglomerations of typically 100.000 stars. The very
large stellar number densities in their centers are believed to produce via
stellar collisions black holes between several hundred and several thousand
solar masses, so-called ”intermediate mass black holes” (intermediate be-
tween stellar mass black holes that result from a supernova explosion and
the supermassive black holes that are observed in the centers of galaxies).

Figure 3: Rendering of two surfaces segmenting the white dwarf data set
with respect to the density. The transparent yellow surface represents the
isosurface to the isovalue 2·104g/cm3, whereas the red surface is the isosurface
to the isovalue 2 · 105g/cm3.

Being old, globular clusters also contain large numbers of the remnants
of solar-type stars, so-called white dwarfs. We simulated the fly-by of white
dwarfs close to such an intermediate mass black hole [Rosswog and Ramirez-
Ruiz 2007, to be submitted]. In these simulations the white dwarf was mod-
eled with up to 7.000.000 SPH particles. During the fly-by the white dwarfs
become very strongly compressed and the resulting temperature increase trig-
gers the thermonuclear ignition of the white dwarf material. Thus for each

8

SPH particle the evolution of the nuclear abundances and the resulting en-
ergy release is calculated via a nuclear reaction network [Hix et al., 1998].
Since during the compression the required nuclear reaction time steps are
smaller than the hydrodynamic time steps by several orders of magnitude,
the hydrodynamics and the nuclear reactions are calculated by two different
time-integration schemes in an operator splitting fashion.

Figure 4: Illustration of the surface extraction pipeline on a later point in time
of the white dwarf simulation. In the topmost picture, the seven million SPH
data points are shown. The middle picture shows the extracted isopoints.
The extracted isosurface is rendered in the lowermost picture.

Such a simulation usually produces of the order one thousand data dumps,
where each dump contains more than one Gbyte of physical data represented
on the SPH particles. To understand and analyze such simulations it is
of uttermost importance to be able to visualize the physical variables in
a 3D rendering like the one shown in Figure 3. As the outcome of such
simulations is a priori unknown, there are no ”standard tasks” that can be
routinely performed on the data sets. Therefore, the key to an efficient

9

scientific production process is a very rapid and flexible 3D visualization tool
that allows to interactively explore the large data sets.

Figure 5: Comparison between direct isosurface extraction on the left side
and level-set segmentation on the right side for a white dwarf simulation
with 500.000 particles. To illustrate the significant advantage of the level-set
approach, we show a rendering of the surface points with very small splats.

For every data set with seven million particles, the presented method
takes ten seconds to build the kd-tree and another eight seconds to generate
the neighborhood informations. Subsequently every isosurface-point-cloud
extraction lasts eight seconds, i.e. no recalculation of the kd-tree or neighbor-
hood is needed. The extracted 3D point cloud can be explored interactively.
If a relevant isosurface is found, it can be rendered in at most one minute.
An illustration of the surface-extraction pipeline is shown in Figure 4.

A comparison between isosurface extraction and the level-set approach on
a sparse sampled 500.000 particles white dwarf data set is shown in Figure 5.

6 Conclusion

We presented a visualization method for smoothed particle hydrodynamics
simulation data. To visualize a scalar field associated to the particles, we di-
rectly extract a surface segmenting the domain of the particles with respect
to a given isovalue without any 3D mesh generation or reconstruction over a
structured grid. For this purpose we use a spatial domain partitioning using
a kd-tree and an indexing scheme for efficient neighbor search. Between ap-
propriate neighbors, surface points are computed using linear interpolation

10

with respect to the isovalue. To improve the smoothness of the extracted sur-
face a level-set method is applied to the data prior to surface extraction. The
resulting point cloud is visualized using point-based rendering techniques.

The presented application pipeline was tested on a case study dealing with
the simulation of a white dwarf passing a black hole. After a short prepro-
cessing the extracted isopoint clouds can be explored interactively, whereas
the isovalue or the physical quantity can be changed in nearly interactive
time. This fast and interactive data visualization approach allows for an effi-
cient extraction of the physical information contained in the simulation data
and substantially speeds up the otherwise cumbersome analysis process.

References

[Bentley, 1975] Bentley, J. L. (1975). Multidimensional binary search trees
used for associative searching. Commun. ACM, 18(9), 509–517.

[Co & Joy, 2005] Co, C. S. & Joy, K. I. (2005). Isosurface Generation for
Large-Scale Scattered Data Visualization. In G. Greiner, J. Hornegger, H.
Niemann, & M. Stamminger (Eds.), Proceedings of Vision, Modeling, and
Visualization 2005 (pp. 233–240).: Akademische Verlagsgesellschaft Aka
GmbH.

[Franke & Nielson, 1991] Franke, R. & Nielson, G. M. (1991). Geometric
Modeling: Methods and Applications, chapter Scattered Data Interpola-
tion: A Tutorial and Survey, (pp. 131–160). Springer Verlag, New York.

[Gingold & Monaghan, 1977] Gingold, R. A. & Monaghan, J. J. (1977).
Smoothed particle hydrodynamics – theory and application to non-
spherical stars. Royal Astronomical Society, Monthly Notices, 181, 375–
389.

[Hix et al., 1998] Hix, W. R., Khokhlov, A. M., Wheeler, J. C., & Thiele-
mann, F.-K. (1998). The Quasi-Equilibrium-reduced alpha -Network. As-
trophysical Journal, 503, 332–+.

[Linsen et al., 2007] Linsen, L., Müller, K., & Rosenthal, P. (2007). Splat-
based ray tracing of point clouds. Journal of WSCG, 15(1–3).

11

[Linsen & Prautzsch, 2001] Linsen, L. & Prautzsch, H. (2001). Global versus
local triangulations. In J. Roberts (Ed.), Proceedings of Eurographics 2001,
Short Presentations.

[Lucy, 1977] Lucy, L. B. (1977). A numerical approach to the testing of the
fission hypothesis. Astronomical Journal, 82, 1013–1024.

[Monaghan, 2005] Monaghan, J. J. (2005). Smoothed particle hydrodynam-
ics. Reports of Progress in Physics, 68, 1703–1759.

[Osher & Fedkiw, 2003] Osher, S. & Fedkiw, R. (2003). Level set methods
and dynamic implicit surfaces. Springer.

[Osher & Sethian, 1988] Osher, S. & Sethian, J. A. (1988). Fronts propagat-
ing with curvature-dependent speed: Algorithms based on hamilton-jacobi
formualtions. Journal of Computational Physics, (79), 12–49.

[Rosenthal & Linsen, 2006] Rosenthal, P. & Linsen, L. (2006). Direct
isosurface extraction from scattered volume data. In Proceedings of
Eurographics/IEEE-VGTC Symposium on Visualization (pp. 99–106).

[Treece et al., 1999] Treece, G. M., Prager, R. W., & Gee, A. H. (1999). Reg-
ularised marching tetrahedra: improved iso-surface extraction. Computers
and Graphics, 23(4), 583–598.

[Vesterlund, 2004] Vesterlund, M. (2004). Simulation and rendering of a vis-
cous fluid using smoothed particle hydrodynamics. Master’s thesis, Umea
University, Sweden.

12

Index

angle criterion, 6

cell, 4

direct neighbors, 5

indexing scheme, 4
indirect neighbors, 5
isopoint, 3
isosurface, 3

kd-tree, 4
kernel, 3

level-set segmentation, 7

maximum distance criterion, 6

neighborhood, 5

particle, 3
point-based rendering, 4

smoothed particle hydrodynamics, 3
smoothing length, 3
splats, 4

unstructured point-based volume data,
3

13

	Introduction
	Smoothed Particle Hydrodynamics
	Isosurface Extraction
	Data Storage
	Neighborhood Computation
	Angle and Maximum Distance Criterion

	Level-Set Segmentation
	Case Study: White Dwarf Black Hole Encounters
	Conclusion

